Формула эффективная ставка по кредиту

Содержание
  1. Как рассчитать эффективную процентную ставку по кредиту
  2. Эффективная процентная ставка и стоимость кредита
  3. Что не учитывается в полной стоимости кредита
  4. Что еще не входит в полную стоимость кредита
  5. Как рассчитать эффективную процентную ставку
  6. Пример расчета ЭПС по кредиту
  7. Что нужно запомнить
  8. Сутьи и расчет эффективной процентной ставки
  9. Расчет ЭКС (эффективной кредитной ставки)
  10. Расчет эффективной кредитной ставки по специальной формуле
  11. Проведем пример расчета
  12. Расчет эффективной кредитной ставки в Excel
  13. Эффективная процентная ставка по кредиту: что это такое, формула и расчет
  14. Что такое эффективная процентная ставка
  15. Формула эффективной процентной ставки
  16. Расчет реальной эффективной процентной ставки по кредиту
  17. Эффективная ставка по кредиту (расчет, формула)
  18. Что такое эффективная процентная ставка по кредиту?
  19. Расчет эффективной ставки по кредиту по формуле
  20. Расчет эффективной ставки по кредиту в эксель (excel)
  21. Расчет эффективной ставки по кредиту на кредитном калькуляторе
  22. Эффективная процентная ставка
  23. Формула
  24. Пример 1
  25. Пример 2
  26. Пример 3
  27. Расчет Эффективной ставки в EXCEL
  28. Эффективная (фактическая) годовая процентная ставка
  29. Эффективная ставка по вкладу
  30. Эффективная процентная ставка по потребительским кредитам
  31. Использование эффективной ставки для сравнения кредитных договоров с разными схемами погашения

Как рассчитать эффективную процентную ставку по кредиту

Формула эффективная ставка по кредиту

Выбирая кредит в банке, заемщик ориентируется только на процентную ставку. И где ставка ниже, там и условия подходящие. Все, кто рассуждают именно так, ошибаются. Ключевое понятие не обычная, а эффективная процентная ставка (ЭПС). Что не учитывают банки при полной стоимости кредита, как рассчитать эффективную процентную ставку и выбрать выгодный кредит – в материале статьи.

Эффективная процентная ставка и стоимость кредита

Банки, конкурируя друг с другом на рынке услуг, привлекают клиента процентной ставкой по кредиту. Заявляют о беспрецедентных 9 % годовых. Звучит прекрасно. Вот как обстоит дело на самом деле:

  1. Процентная ставка по договору растет. В первый год – 9 %, в последующие – 16 – 18 %. Это прописано в договоре, но мелким шрифтом. 
  2. Неучтенные комиссии. Оплата открытия и ведения счетов, нередки сборы за рассмотрение заявки и за операционное обслуживание, плата за обслуживание банковских карт, страховые взносы. Итоговая сумма растет в геометрической прогрессии. 

Когда количество обманутых клиентов достигло опасного предела, Центробанк выпустил законодательный акт от 13 марта 2008 года. В нем четко обозначалось требование по донесению до клиента полной стоимости кредита. Банк теперь обязан сообщить заемщику стоимость кредита с учетом всех комиссий.

Что не учитывается в полной стоимости кредита

Итак, банк сообщает нам полный размер выплат. Но нюансы остаются. При обеспеченном кредитовании не учитываются страховые взносы:

  • автострахование при автокредите;
  • страхование жизни заемщика при крупных суммах займа;
  • страховка на случай пожара или порчи имущества при ипотечном займе;
  • оценка залогового имущества у местных экспертов по повышенным тарифам.

Что еще не входит в полную стоимость кредита

  1. Доплаты за досрочное погашение. Часто внушительны настолько, что досрочное погашение становится крайне невыгодным для клиента.
  2. Оплата опциональных услуг. Предоставление информации, обслуживание банковской карты, СМС с пожеланиями доброго утра. Все то, от чего клиент имел право отказаться. Но ему не сообщили, что он имел право на отказ.
  3. Оплата штрафов. Санкции за просрочки.

Банки в 9 из 10 случаев сообщают итоговую стоимость перед подписанием договора, когда времени на расчеты не остается. Сравнить выгоду предложений разных банков не получится, если самостоятельно не рассчитать ЭПС. ЭПС – это не только способ сравнить выгоду.

А возможность не переплачивать по кредиту 70 – 80 тысяч, когда в договоре прописаны 50. 

Как рассчитать эффективную процентную ставку

Существует множество формул для расчета ЭПС в зависимости от типа платежей (равными долями или уменьшающимися), наличия первоначального взноса, тех или иных комиссий. Но все формулы основываются на Указании Центробанка. А в нем дается точная формула определения полной стоимости кредита.

Где:

  1. ДПi – размер платежа за номером «i».
  2. ПСК – полная стоимость в годовых процентах.
  3. n – количество платежей.
  4. di и d0 – дата платежа за номером «i» и первого платежа.

Если вы не математик, то самостоятельно произвести расчет по такой формуле крайне сложно. Воспользуйтесь одним из онлайн-калькуляторов. Все они основываются на этом уравнении. В сети подобных умных программ – море. Для компетентной проверки стоит перепроверить результат на нескольких из них.

В крайнем случае воспользуйтесь Microsoft Excel.

Пример расчета ЭПС по кредиту

Воспользуемся онлайн-калькулятором по формуле Центробанка. Уточним, что калькуляторы учитывают массу переменных, которых в формуле нет. В этом их преимущество. Значения возьмем произвольные. Всех сведений банк вам не расскажет до момента подписания договора, поэтому цифры придется брать приблизительные.

Пример. Кредит в 100 тысяч рублей на 10 лет с процентной ставкой 10 %. Страховка 2 % от кредита ежегодно. Обобщим комиссии – итого  300 рублей ежемесячно. Добавим разовую комиссию за кредит – 5 тысяч рублей.

Калькулятор сообщит, что мы выплатим сумму в 214 тысяч рублей. При том, что в последние месяцы сумма, направленная на погашение процентной ставки, упадет с 833 рублей ежемесячно до 10 рублей. А вот отчисления на комиссии останутся неизменными.

Итак, на страховку и комиссии в общем будет затрачена 61 тысяча рублей. Сумма, которая не высчитывается при помощи процентной ставки, но легко находится с помощью ЭПС.

Что нужно запомнить

  1. Уточните полную стоимость кредита, найдите ее в договоре или попросите указать.
  2. Отказывайтесь от всех опциональных услуг. 
  3. Отказывайтесь от страховок там, где это возможно. 
  4. Рассчитайте ЭПС самостоятельно по формуле и сделайте вывод о выгоде кредита.

Банк не вправе навязывать услуги клиенту. Но вправе отказать ему в кредитовании. И порой ваша категоричная позиция и станет поводом для разрыва намечающейся сделки. Если вы отказались от всех опциональных услуг и страховок, а банк не стал заключать договор – радуйтесь.

Вы избежали мошенничества.

Была ли полезной эта статья? Напишите нам в группу , о чем бы вы хотели узнать из наших материалов в будущем:https://.com/credithub

Наш веб сайт:credithub.ru

Источник: https://zen.yandex.ru/media/id/5d396295f2df2500aca39354/kak-rasschitat-effektivnuiu-procentnuiu-stavku-po-kreditu-5d711e44ec575b00ac09f481

Сутьи и расчет эффективной процентной ставки

Формула эффективная ставка по кредиту

Выбирая наиболее выгодные условия кредитования, каждый клиент ориентируется именно на процентную ставку. Это неправильный подход. У одного банка ставка может быть ниже, чем у другого, а в кредитной программе скрыты дополнительные комиссии. Все это нужно учитывать. Так как же правильно рассчитать эффективную процентную ставку? В чем ее суть?

Это ставка, которая отображает реальную стоимость кредита. Она должна учитывать все дополнительные выплаты при оформлении займа. К ним относят следующее:

  • плата за открытие и ведение счета;
  • плата за внесение наличных через кассу или специальные устройства;
  • комиссия за снятие со счета и прочее.

Несмотря на то, что Центральный Банк РФ обязал коммерческие банки раскрывать информацию об эффективной процентной ставке по кредиту, многие из них не соблюдают такие условия.

Расчет ЭКС (эффективной кредитной ставки)

Есть несколько методов:

  • с помощью специальной формулы;
  • в программе Excel;
  • с помощью кредитного калькулятора.

Рассмотрим каждый из них.

Расчет эффективной кредитной ставки по специальной формуле

Для удобства расчетов была разработана определенная формула:

ЭКС = СКР / t / ССК, где

ЭКС – эффективная кредитная ставка,
СКР – полная сумма кредитных расходов с учетом дополнительных выплат и комиссий,
t – срок кредитования в годах,
ССК – средневзвешенная сумма кредита.

Последний показатель (ССК) определяют по дополнительным формулам в зависимости от типа погашения кредита.

При классической схеме погашения ССК определяют по формуле:

ССК = СК * (t+1) / (t+2), где

СК – сумма кредита,
t – срок кредита в месяцах.

При аннуитетной схеме погашения ССК определяют по такой формуле:

ССК = СК ((((1+%/12)t-1) / (%*t/12)) — ((((1+%/12)t-1) / (%/12))-t) / (t*(1-(1+%/12))t)))), где

СК – сумма кредита,
t – срок кредита в месяцах.

Исходя из вышеуказанной информации, можно сделать вывод, что гораздо сложнее производить расчет эффективной кредитной ставки именно с аннуитетной формой погашения. Также стоит отметить, что стоимость кредитов с аннуитетами гораздо выше, чем с классический схемой погашения. Последняя заключается в том, что проценты начисляют не на общую сумму кредита, а на ее остаток.

Проведем пример расчета

Клиент хочет оформить кредит на сумму 50 тыс. руб. на срок 12 месяцев. Ему нужно заплатить при выдаче займа страховку в размере 1000 руб., за оформление кредита — 250 руб., Процентная ставка по кредиту — 18,5% годовых. Размер платежей рассчитывается по классической схеме.

Изначально нам нужно определить, сколько клиент должен заплатить за 12 месяцев кредита. Для этого вычисляем:

50 000 * 18,5% годовых = 9250 руб.

Это будет переплата по кредиту за весь период пользования. К этой сумме прибавляем другие расходы:

9250 + 250 + 1000 = 10500 руб.

Итак, полная сумма кредитных расходов (СКР) составит 10500 руб.

Теперь определяем ССК (средневзвешенную сумму кредита) по вышеуказанной формуле:

ССК = 50 000 (СК) * (12+1)/(12+2) = 46428,57 руб.

Можно переходить к расчету эффективной кредитной ставки по формуле:

10500 (СКР)/12(t)/46428,57(ССК) = 0,0188

Теперь эту сумму умножаем на 100%. Получается 1,88% в месяц, так как мы использовали в формуле временной промежуток в 12 месяцев. Если клиент будет погашать кредит на протяжении всего срока действия, ЭКС составит 22,56% годовых, а не заявленные 18,5% годовых.

Расчет эффективной кредитной ставки в Excel

Такой метод считается самым популярным. Нужно воспользоваться программой Ексель. В ней есть огромное количество встроенных функций, которые помогают сделать правильные расчеты.

Давайте рассмотрим все на примере.

Клиент оформляет кредит на сумму 100 000 руб. Срок кредитования 24 месяца. Заявленная банком процентная ставка составляет 17% годовых. Клиент должен единоразово внести комиссию в размере 15 000 руб.

Строим в Екселе таблицу следующего вида:

  • первый столбец — нумерация месяцев;
  • второй — дата погашения в каждом месяце;
  • третий — сумма ежемесячного погашения.
МесяцДата погашенияСумма ежемесячного платежа
122.09.2016-85000 (15000 — комиссия)
2

Источник: https://bankstoday.net/last-articles/effektivnaya-stavka-po-kreditu-chto-eto-takoe-kak-pravilno-ee-rasschitat

Эффективная процентная ставка по кредиту: что это такое, формула и расчет

Формула эффективная ставка по кредиту

Как определить какой банк предлагает самые выгодные условия кредитования? Многие заёмщики ориентируются на годовую процентную ставку.

Например, один банк даёт кредит под 22% годовых, а другой – под 18%.

Заёмщик сравнивает эти цифры и авторитетно заявляет: «Второй банк выгоднее!» Ага, выгоднее! А как же скрытые платежи в виде различных комиссий и сборов? Их что, учитывать не будем?

В общем, если вы решили сравнить условия кредитования в банках по величине процентной ставки, то анализируйте не годовую, а эффективную процентную ставку. Давайте выясним, что это такое, проанализируем её формулу и выполним расчёт.

Что такое эффективная процентная ставка

Много лет назад сотрудничество с банками было простым и понятным: пришёл в отделение, посмотрел на годовую процентную ставку и уже имеешь полное представление о стоимости кредита. Не было никаких дополнительных комиссий, сборов и других скрытых платежей, а график погашения кредита рассчитывался по одной единственной схеме – дифференцированной.

Сейчас же заёмщика при получении кредита ожидает полный «трэш». Вот он сидит дома на унитазе и мирно читает какую-то рекламную газетку. Но вдруг его лобик сморщился, затем глазки забегали, и на лице появилась безумная улыбка.

Через минуту «пациент» выбегает из туалета с криком: «Нашёл! Я нашёл банк с самыми выгодными условиями кредитования! Это банк «Лохотрон-инвест», который выдаёт кредиты под 0 процентов годовых! Люся, где мои кеды? Срочно погладь шнурки от них!»

Вот он уже стоит в отделении банка и с умным выражением лица внимательно слушает топ-менеджера Пьетро Спагеттини, который методично двумя вилками навешивает ему на уши лапшу разных сортов. В общем, «охотник» и «жертва» встретились.

Действительно, «Лохотрон-инвест» предлагает заёмщикам самую низкую в стране годовую процентную ставку по кредитам.

Правда, чтобы получить кредит, придётся оформить страховку, оплатить услуги оценщика и нотариуса, за открытие счёта надо внести комиссию, ну и там ещё немного – «по-мелочам», а погашать кредит необходимо только аннуитетными платежами. Но это же всё ерунда – главное, что годовая процентная ставка у них самая выгодная!

В итоге получается, что заёмщики компании «Лохотрон-инвест» в реальности переплачивают за кредиты гораздо больше, чем клиенты других банков.

При помощи скрытых платежей и комиссий современные банки маскируют свои реальные условия кредитования. Вывести их на чистую воду нам поможет эффективная процентная ставка. Что это такое? Читаем определение:

Эффективная процентная ставка – это реальная переплата по кредиту, выраженная в процентах годовых.

То есть, если умножить сумму кредита на эффективную процентную ставку и на количество лет, на которое он взят, то в итоге получится сумма, которую вы переплатите за пользование кредитом. Естественно, в неё включены все комиссии, сборы и прочие скрытые платежи. Кстати, хотим обратить ваше внимание:

Некоторые кредиторы при расчёте эффективной процентной ставки не учитывают расходы, которые заёмщик заплатит сторонним организациям, таким как нотариальные конторы, страховые компании, экспертные фирмы и т. д. В результате, клиент получит искажённую информацию о реальной стоимости кредита.

Так что будьте внимательны, друзья. Тщательно анализируйте и проверяйте все расчёты, предоставляемые банком. Правда, для этого надо знать специальные формулы. Вот их мы сейчас и рассмотрим.

Формула эффективной процентной ставки

Девиз многих банков можно сформулировать тремя словами:

«Максимально запутать заёмщика».

Вот и с эффективной процентной ставкой получилось что-то аналогичное. Они её начали рассчитывать по каким-то сложным непонятным формулам. Наибольшее распространение получил этот «шедевр»:

S0 – сумма выданного кредита (тело кредита);
R0 – первоначальный платёж;
Rk – платёж выполненный в определённый период (k);
n – общее количество платежей;
i – эффективная процентная ставка;
tk – период выплаты k-го платежа.

Страшно? Не бойтесь! Сейчас всё объясним! Смотрите, вот этот значок «Σ» называется «сигма», он обозначает суммирование (в данной формуле – с первого платежа и до n-го).

Стартовый платёж, в который включаются услуги нотариусов, оценщиков и прочей «нечисти» обозначается в формуле буквой R0 (условно говоря – «нулевой» платёж). Естественно, в формулу не включены различные штрафы и неустойки (считается, что заёмщик своевременно вносит все необходимые платежи по кредиту).

Эффективная процентная ставка (i) «спрятана» внутри формулы, и «вытащить» её оттуда будет нелегко. Вот такая интересная формула, друзья.

Тем не менее, даже глядя на этот «шедевр» сразу бросаются в глаза, как некоторые неопределенности, так и потенциальные возможности для манипуляций. Например, в данную формулу кредитор не станет вносить расходы на страхование предмета залога по договору залога. А заемщик заинтересован в том, чтобы в расчете эффективной процентной ставки были учтены абсолютно все платежи.

Ведь ему важно получить не столько красивую, сколько реальную цифру. И если страховка заложенного банку автомобиля, купленного в кредит за 500 000 руб. составляет 4% от его стоимости, то с учетом этих расходов, заёмщику кредит за год реально обойдётся на 20 000 руб. дороже.

Аналогичным образом обстоят дела и с другими платежами, которые не учитываются кредиторами.

Из всего вышесказанного напрашивается вывод, что реальный показатель эффективной процентной ставки лучше рассчитывать самостоятельно, учитывая все платежи, связанные с получаемым кредитом. Для этого мы вам рекомендуем использовать простую и понятную формулу:

i – эффективная процентная ставка (%);
S – общая сумма всех выплат по кредиту;
S0 – сумма выданного кредита;
n – срок кредитования (указывается количество месяцев).

В общую сумму всех выплат по кредиту (S) входят не только банковские поборы в виде скрытых комиссий, комиссий за открытие счёта и т.д. Сюда входят и всевозможные страховки, оплаты нотариальных услуг, выплаты оценщикам – в общем, все те платежи, которые требуется выполнить для получения кредита.

Кстати, обратите внимание на один важный момент:

Величина эффективной процентной ставки существенно зависит от общего срока кредитования. Ведь при её расчете учитываются не только ежемесячные, но и разовые комиссии и сборы.

Например, банк выдал вам кредит в 200 000 рублей под 20% годовых и взял с вас комиссию за его выдачу в размере 2000 рублей. Независимо от того, сколько вы будете пользоваться кредитом (один день или пять лет), его стоимость увеличится на 2000 рублей.

Согласитесь, для однодневного кредита данная цифра выглядит просто драконовской на фоне начисленных процентов по дифференцированной схеме (за один день около 110 рублей).

А вот в течение пяти лет по этому кредиту процентов «набегает» на сумму 101 667 рублей, на фоне которых 2000 рублей воспринимаются как мелкие текущие издержки.

Расчет реальной эффективной процентной ставки по кредиту

Давайте в качестве примера рассчитаем эффективную процентную ставку по аннуитетному кредиту, взятому на 12 месяцев под 22% годовых. Ознакомиться с его графиком погашения вы можете здесь. Итак, нам для расчётов понадобятся следующие исходные данные:

Сумма выданного кредита (S0) – 50 000 руб.
Общая сумма выплат (S) – 56 157 руб.
Срок кредитования (n) – 12 месяцев.

Подставляем их в нашу формулу и считаем:

Итак, эффективная процентная ставка по данному кредиту равна 12,31%. Это означает, что взяв в кредит 50 000 рублей на один год (12 месяцев), наш заёмщик реально заплатит банку и другим структурам 12,31% годовых от этой суммы, что составит 6157 рублей. В результате, общий размер выплат будет равен 56 157 рублей.

Хотим обратить ваше внимание, что в нашем примере учтены только выплаты процентов по кредиту (предполагается, что заёмщик имеет дело с банком, не начисляющим скрытых платежей). Если бы такие платежи были начислены, то они бы тоже были включены в общую сумму выплат (S). Естественно, в результате увеличится размер эффективной процентной ставки по кредиту.

Кстати, в настоящее время банки рассчитывают не эффективную процентную ставку, а полную стоимость кредита. Перейдя по указанной ссылке, вы узнаете, что это такое и по каким формулам рассчитывается.

Ну что, друзья, разобрались с данной темой? Вот и отлично! Портал temabiz.com желает вам успехов и процветания. Оставайтесь с нами!

Источник: https://temabiz.com/finterminy/effektivnaja-procentnaja-stavka.html

Эффективная ставка по кредиту (расчет, формула)

Формула эффективная ставка по кредиту
08.10.2014 33 595 0 Время на чтение: 8 мин. :

Сегодня я хочу рассказать вам о том, что такое эффективная ставка по кредиту, для чего она нужна, как, по какой формуле производится расчет эффективной ставки, как можно ее рассчитать самостоятельно.

На мой взгляд, расчет эффективной ставки по кредиту сегодня просто необходим тем, кто собирается взять кредит, и вот почему.

Что такое эффективная процентная ставка по кредиту?

Сейчас все банки используют разные схемы получения доходов от кредитования, уже нет той единой годовой ставки, на которую можно было ориентироваться 10 лет назад, а, помимо нее, есть множество ежегодных и ежемесячных комиссий, в которых сам черт ногу сломит.

Поэтому сравнить условия кредитования двух банков очень сложно (на это банки и рассчитывают).

Здесь недостаточно просто сравнить процентные ставки и размеры комиссий, нужно еще учесть много других нюансов, которые влияют на реальную стоимость кредита: например, схему погашения кредита и его срок.

Именно для того, чтобы можно было точно сравнить, в каком банке выгоднее условия кредитования, и появилась эффективная процентная ставка. Сначала ее начали рассчитывать самые продвинутые заемщики, а затем в некоторых странах даже на законодательном уровне обязали банки сообщать своим клиентам эффективную процентную ставку. Итак, что же это за показатель?

Эффективная ставка по кредиту — это выражение всех кредитных платежей, содержащихся в условиях и тарифах кредитного договора, в одном показателе, приведенном к понятной всем годовой процентной ставке.

Другими словами, это та реальная годовая ставка, которую заемщик будет платить за пользование кредитом с учетом процентной ставки, всех комиссий, схемы погашения и срока кредита.

В расчет эффективной ставки по кредиту не входят расходы на услуги, сопутствующие кредиту (страхование, нотариальные услуги, услуги экспертной оценки и т.д.).

Сам по себе расчет эффективной ставки по кредиту произвести достаточно сложно, но, как говорится, возможно, особенно с учетом того, что нынешние технологии позволяют существенно упростить процедуру расчета. Итак, рассмотрим, как рассчитать эффективную ставку по кредиту.

Расчет эффективной ставки по кредиту по формуле

Первый традиционный вариант — использование формулы. Сама формула расчета эффективной ставки довольно сложная, но все таки считаю необходимым ее озвучить, чтобы вы понимали, о чем речь.

Как вы видите, сложнее всего рассчитать эффективную ставку по кредиту с аннуитетной схемой погашения, которую так любят использовать банки в последнее время.

Потому как, забегая вперед, скажу, что при совершенно одинаковых годовых процентах и комиссиях по кредиту с аннуитетным графиком погашения эффективная процентная ставка будет выше, причем, чем больше срок кредитования — тем больше будет эта разница.

При желании формулу расчета эффективной ставки по кредиту можно упростить, вообще, их существует несколько вариантов, главное — по одной формуле сравнивать условия разных банков, чтобы видеть, где они выгоднее.

Расчет эффективной ставки по кредиту в эксель (excel)

Чтобы не мучаться со сложными математическими расчетами, в которых, скорее всего, никто ничего не понял (и это вполне нормально, не все мы здесь математики), можно использовать для расчета эффективной ставки по кредиту Excel.

Этот способ подойдет, прежде всего, тем, кто «дружит» с этим табличным редактором, знает, что такое функции, и как использовать.

Если же пока таких знаний нет, то их можно получить из стандартных справочных материалов, которые вызываются клавишей F1.

В табличном редакторе MS Excel уже имеются некоторые встроенные функции, позволяющие рассчитать эффективную процентную ставку:

  • ЭФФЕКТ (EFFECT);
  • ЧИСТВНДОХ (XIRR);
  • ПЛТ (PMT);
  • и др.

Я не буду подробно описывать все варианты проведения нужных нам расчетов: как работают эти функции, и как их следует правильно использовать — вы можете найти эту информацию в подробном виде в справке MS Excel. Приведу пример расчета эффективной процентной ставки при помощи функции ПЛТ:

В строке формулы вы видите, как выглядит формат функции ПЛТ, и, исходя из ячеек, задействованных в формуле, можете видеть, что она считает. Обращаю внимание на то, что значение суммы (в примере — ячейка B3) необходимо указывать со знаком минус.

Расчет эффективной ставки по кредиту на кредитном калькуляторе

И, наконец, если и ручная математика, и эксель вам не подходят (наверное, это так), то выбираем самый простой метод: набираем в поисковике «калькулятор для расчета эффективной процентной ставки», открываем что-нибудь из результатов поиска и пользуемся. Приведу пример такого расчета:

Минус в том, что вы не будете понимать, по какому принципу он ее рассчитывает, но, с другой стороны, возможно вам это и не нужно, поскольку, как вы видите из формулы и функций excel, процедура эта не из простых. Таким образом, просто сравниваете эффективные ставки по кредитам в разных банках, которые вы рассматриваете, и выбираете тот вариант, где этот показатель меньше.

В заключение хочу добавить, что расчет эффективной процентной ставки можно производить не только для кредитных, но и для депозитных продуктов, например, если предполагается начисление сложного процента.

Теперь вы получили представление о том, что такое эффективная ставка по кредиту (эффективная процентная ставка) и как можно ее рассчитать. Надеюсь, что эта информация будет вам полезна. Оставайтесь на Финансовом гении и учитесь эффективно и рационально использовать личные финансы. До новых встреч!

Источник: https://fingeniy.com/effektivnaya-stavka-po-kreditu-raschet-formula/

Эффективная процентная ставка

Формула эффективная ставка по кредиту

Концепция эффективной процентной ставки (англ. Effective Interest Rate) используется для того, чтобы провести оценку всех затрат связанных с привлечением заемного финансирования или доходов от вложений в финансовый актив.

Кроме того, требования МСФО (международных стандартов финансовой отчетности) предполагают использование эффективной процентной ставки при оценке финансовых инструментов, учитываемых по амортизированной стоимости, признании расходов и доходов по финансовым инструментам, расчете обесценения финансового актива на основе приведенной стоимости будущих денежных потоков.

Причина использования этой концепции при принятии решений заключается в том, что эффективная годовая процентная ставка может отличаться от номинальной годовой процентной ставки, указанной в договоре. Причиной несовпадения этих величин служат следующие факторы:

  • количество периодов, за которое в течение года начисляются проценты;
  • фактическая сумма уплаченных процентов;
  • фактически понесенные расходы на выплату долга.

Формула

При проведении финансовых расчетов эффективная процентная ставка приводится к годовому формату и также может упоминаться как эффективная годовая процентная ставка или годовая эквивалентная ставка (англ. Annual Equivalent Rate).

Для оценки доходности краткосрочного финансового актива (срок обращения менее 12 месяцев) используется следующая формула:

где i – номинальная годовая процентная ставка, n – количество периодов, за которое в течение года начисляются проценты (например, если проценты начисляются ежемесячно, то n=12).

При оценке стоимости использования краткосрочного финансирования формулу эффективной годовой процентной ставки в общем виде можно записать следующим образом:

r = Проценты к уплате
Сумма кредита

В случае дисконтного процента формула должна быть трансформирована следующим образом:

r = Проценты к уплате
Сумма кредита – Проценты к уплате

При расчете эффективной процентной ставки также должны быть учтены следующие два фактора:

  1. Дополнительные расходы, которые по сути являются срытыми процентами.
  2. Условия, затрагивающие основную сумму долга. Например, наличие компенсационного остатка по кредиту уменьшает реальную располагаемую сумму.

В этом случае формулы выше должны быть скорректированы следующим образом:

r = Проценты к уплате + Дополнительные расходы
Сумма кредита – Компенсационный остаток

Для дисконтного процента следует воспользоваться этой формулой:

r = Проценты к уплате + Дополнительные расходы
Сумма кредита – Проценты к уплате – Компенсационный остаток

Пример 1

Предположим, что инвестор рассматривает возможность приобретения векселя за $9 655 со сроком погашения наступающим через четыре месяца и номиналом $10 000. В этом случае расчет эффективной годовой процентной ставки будет выглядеть следующим образом.

Проценты к получению = $10 000 – $9 655 = $345

Ставка процента за 4 месяца = $345 = 3,573%
$9 655

Эффективная годовая процентная ставка = (1 + 0,03573)12/4 – 1 = 11,107%

В этом случае мы привели наши расчеты к годовой эквивалентной ставке с учетом концепции сложных процентов.

Пример 2

Компания GFL LTD рассматривает различные варианты финансирования потребности в оборотном капитале в размере $100 000. Существует возможность взять банковский кредит на следующих условиях:

  • период кредитования 1 год;
  • номинальная годовая процентная ставка 12%;
  • единовременная комиссия за рассмотрение кредитной заявки и открытие кредитного счета 2% от суммы кредита;
  • компенсационный остаток $15 000.

Проценты к уплате = $100 000 × 12% = $12 000

Дополнительные расходы = $100 000 × 2% = $2 000

Эффективная годовая процентная ставка = $12 000 + $2 000 = 16,471%
$100 000 – $15 000

Пример 3

Корпорация Tristan Inc. имеет банковский кредит, который был взят на следующих условиях:

  • сумма кредита $250 000;
  • период кредитования 1 год;
  • дисконтный процент при номинальной годовой процентной ставке 15%;
  • расходы открытие кредитного счета 1% от суммы кредита;
  • компенсационный остаток $50 000.
Проценты к уплате = $250 000 – $250 000 = $32 608,70
(1+0,15)1

Дополнительные расходы = $250 000 × 1% = $2 500

Эффективная годовая процентная ставка = $32 608,70 + $2 500 = 20,974%
$250 000 – $32 608,70 – $50 000

  • ← ABC-анализ
  • Товарный кредит →

Источник: https://allfi.biz/effektivnaja-procentnaja-stavka/

Расчет Эффективной ставки в EXCEL

Формула эффективная ставка по кредиту

Рассчитаем в MS EXCEL эффективную годовую процентную ставку и эффективную ставку по кредиту.

Эффективная ставка возникает, когда имеют место Сложные проценты . Понятие эффективная ставка встречается в нескольких определениях.

Например, есть Эффективная (фактическая) годовая процентная ставка, есть Эффективная ставка по вкладу (с учетом капитализации), есть Эффективная процентная ставка по потребительским кредитам . Разберемся, что эти ставки из себя представляют и как их рассчитать в MS EXCEL.

Эффективная (фактическая) годовая процентная ставка

В MS EXCEL есть функция ЭФФЕКТ(номинальная_ставка, кол_пер), которая возвращает эффективную (фактическую) годовую процентную ставку, если заданы номинальная годовая процентная ставка и количество периодов в году , в которые начисляются сложные проценты. Под номинальной ставкой здесь понимается, годовая ставка, которая прописывается, например, в договоре на открытие вклада. Предположим, что сложные проценты начисляются m раз в год. Эффективная годовая процентная ставка дает возможность увидеть, какая годовая ставка простых процентов позволит достичь такого же финансового результата, что и m-разовое наращение в год по ставке i/m, где i – номинальная ставка. При сроке контракта 1 год по формуле наращенной суммы имеем: S = Р*(1+i/m)m – для сложных процентов, где Р – начальная сумма вклада. S = Р*(1+iэфф) – для простых процентов

Так как финансовый результат S должен быть, по определению, одинаков для обоих случаев, приравниваем оба уравнения и после преобразования получим формулу, приведенную в справке MS EXCEL для функции ЭФФЕКТ() iэфф =((1+i/m)m)-1

Примечание . Если задана эффективная годовая процентная ставка, то величина соответствующей ей годовой номинальной процентной ставки рассчитывается по формуле

или с помощью функции НОМИНАЛ(эффективная_ставка, кол_периодов). См. файл примера .

Эффективная ставка по вкладу

Если договор вклада длится, скажем, 3 года, с ежемесячным начислением по сложным процентам по ставке i, то Эффективная ставка по вкладу вычисляется по формуле: iэфф =((1+i/12)(12*3)-1)*(1/3) или через функцию ЭФФЕКТ( ): iэфф= ЭФФЕКТ(i*3;3*12)/3 Для вывода формулы справедливы те же рассуждения, что и для годовой ставки: S = Р*(1+i/m)(3*m) – для сложных процентов, где Р – начальная сумма вклада. S = 3*Р*(1+iэфф) – для простых процентов (ежегодной капитализации не происходит, проценты начисляются раз в год (всего 3 раза) всегда на первоначальную сумму вклада). Если срок вклада =1 году, то Эффективная ставка по вкладу = Эффективной (фактической) годовой процентной ставке (См. файл примера ).

Эффективная процентная ставка по потребительским кредитам

Эффективная ставка по вкладу и Эффективная годовая ставка используются чаще всего для сравнения доходности вкладов в различных банках. Несколько иной смысл закладывается при расчете Эффективной ставки по кредитам, прежде всего по потребительским.

Эффективная процентная ставка по кредитам используется для сравнения различные кредитных предложений банков.

Эффективная процентная ставка по кредиту отражает реальную стоимость кредита с точки зрения заёмщика, то есть учитывает все дополнительные выплаты, непосредственно связанные с кредитом (помимо платежей по самому кредиту).

Такими дополнительными выплатами являются банковские комиссии — комиссии за открытие и ведение счёта, за приём в кассу наличных денег и т.п., а также страховые выплаты. По закону банк обязан прописывать в договоре эффективную ставку по кредиту.

Но дело в том, что заемщик сразу не видит кредитного договора и поэтому делает свой выбор, ориентируясь лишь на номинальную ставку, указанную в рекламе банка.

Для создания расчетного файла в MS EXCEL воспользуемся Указаниями Центробанка РФ от 13 мая 2008 года № 2008-У «О порядке расчета и доведения до заемщика — физического лица полной стоимости кредита» (приведена Формула и порядок расчета эффективной процентной ставки), а также разъяснительным письмом ЦБ РФ № 175-Т от 26 декабря 2006 года, где можно найти примеры расчета эффективной ставки (см. здесь http://www.cbr.ru/publ/VesnSearch.aspx ). Эффективную ставку по кредиту рассчитаем используя функцию ЧИСТВНДОХ() . Для этого нужно составить график платежей по кредиту и включить в него все дополнительные платежи.

Пример . Рассчитаем Эффективную ставку по кредиту со следующими условиями: Сумма кредита – 250 тыс. руб., срок – 1 год, дата договора (выдачи кредита) – 17.04.2004, годовая ставка – 15%, число платежей в году по аннуитетной схеме – 12 (ежемесячно). Дополнительные расходы – 1,9% от суммы кредита ежемесячно, разовая комиссия – 3000р. при открытии банковского счета.

Сначала составим График платежей по кредиту с учетом дополнительных расходов (см. файл примера Лист Кредит ). Затем сформируем Итоговый денежный поток заемщика (суммарные платежи на определенные даты).

Эффективную ставку по кредиту iэфф определим используя функцию ЧИСТВНДОХ (значения, даты, [предп]). В основе этой функции лежит формула:

Где, Pi = сумма i-й выплаты заемщиком; di = дата i-й выплаты; d1 = дата 1-й выплаты (начальная дата, на которую дисконтируются все суммы).

Учитывая, что значения итогового денежного потока находятся в диапазоне G22:G34 , а даты выплат в B22:B34 , Эффективная ставка по кредиту для нашего случая может быть вычислена по формуле =ЧИСТВНДОХ(G22:G34;B22:B34) . Получим 72,24%.

Значения Эффективных ставок используются при сравнении нескольких кредитов: чья ставка меньше, тот кредит и более выгоден заемщику. Но, что за смысл имеет 72,24%? Может быть это соответствующая ставка по простым процентам? Рассчитаем ее как мы делали в предыдущих разделах: Мы переплатили 80,77т.р. (в виде процентов и дополнительных платежей) взяв кредит в размере 250т.р.

Если рассчитать ставку по методу простых процентов, то она составит 80,77/250*100%=32,3% (срок кредита =1 год). Это значительно больше 15% (ставка по кредиту), и гораздо меньше 72,24%. Значит, это не тот подход, чтобы разобраться в сути эффективной ставке по кредиту.  Теперь вспомним принцип временной стоимости денег: всем понятно, что 100т.р.

сегодня – это значительно больше, чем 100т.р. через год при 15% инфляции (или, наоборот – значительно меньше, если имеется альтернатива положить эту сумму в банк под 15%). Для сравнения сумм, относящихся к разным временным периодам используют дисконтирование, т.е. приведение их к одному моменту времени .

Вспомнив формулу Эффективной ставки по кредитам, увидим, что для всех платежей по кредитам рассчитывается их приведенная стоимость к моменту выдачи кредита. И, если мы хотим взять в 2-х банках одну и туже сумму, то стоит выбрать тот банк, в котором получается наименьшая приведенная стоимость всех наших платежей в погашение кредита.

Почему же тогда не сравнивают более понятные приведенные стоимости, а используют Эффективную ставку? А для того, чтобы сравнивать разные суммы кредита: Эффективная ставка поможет, если в одном банке дают 250т.р. на одних условиях, а в другом 300т.р. на других.

Итак, у нас получилось, что сумма всех наших платежей в погашение основной суммы кредита дисконтированных по ставке 72,24% равна размеру кредита (это из определения эффективной ставки).

Если в другом банке для соблюдения этого равенства потребуется дисконтировать суммы платежей идущих на обслуживание долга по б о льшей ставке, то условия кредитного договора в нем менее выгодны (суммы кредитов могут быть разными). Поэтому, получается, что важнее не само значение Эффективной ставки, а результат сравнения 2-х ставок (конечно, если эффективная ставка значительно превышает ставку по кредиту, то это означает, что имеется значительное количество дополнительных платежей: убрав файле расчета все дополнительные платежи получим эффективную ставку 16,04% вместо 72,24%!).

Примечание . Функция ЧИСТВНДОХ() похожа на ВСД() (используется для расчета ставки внутренней доходности, IRR ), в которой используется аналогичное дисконтирование регулярных платежей, но на основе номера периода выплаты, а не от количества дней.

Использование эффективной ставки для сравнения кредитных договоров с разными схемами погашения

Представим себе ситуацию, когда в 2-х разных банках нам предлагают взять в кредит одинаковую сумму на одинаковых условиях, но выплата кредита в одном будет осуществляться дифференцированными платежами , а в другом по аннуитетной схеме (равновеликими платежами). Для простоты предположим, что дополнительные платежи не взимаются. Зависит ли значение эффективной ставки от графика погашения? Сразу даем ответ: зависит, но незначительно.

В файле примера на листе Сравнение схем погашения (1год) приведен расчет для 2-х различных графиков погашения (сумма кредита 250 т.р., срок =1 год, выплаты производятся ежемесячно, ставка = 15%).

В случае дифференцированных платежей Эффективная ставка по кредиту = 16,243%, а в случае аннуитета – 16,238%. Разница незначительная, чтобы на ее основании принимать решение. Необходимо определиться какой график погашения больше Вам подходит.

При увеличении срока кредита разница между Эффективными ставками практически не изменяется (см. файл примера Лист Сравнение схем погашения (5лет) ).

Примечание . Эффективная годовая ставка, рассчитанная с помощью функции ЭФФЕКТ() , дает значение 16,075%.

При ее расчете не используются размеры фактических платежей, а лишь номинальная ставка и количество периодов капитализации.

Если грубо, то получается, что в нашем частном случае (без дополнительных платежей) отличие эффективной ставки по кредиту от номинальной (15%) в основном обусловлено наличием периодов капитализации (самой сутью сложных процентов).

Примечание . Сравнение графиков погашения дифференцированными платежами и по аннуитетной схеме приведено в этой статье .

Примечание. Эффективную ставку по кредиту можно рассчитать и без функции ЧИСТВНДОХ() – с помощью Подбора параметра. Для этого в файле примера на Листе Кредит создан столбец I (Дисконтированный денежный поток (для Подбора параметра)). В окне инструмента Подбор параметра введите значения указанные на рисунке ниже.

После нажатия кнопки ОК, в ячейке I18 будет рассчитана Эффективная ставка совпадающая, естественно, с результатом формулы ЧИСТВНДОХ() .

Источник: https://excel2.ru/articles/raschet-effektivnoy-stavki-v-ms-excel

Ваш юрист
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: